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butions and mean fitness functions for Crow-Kimura and Eigen-type diploid biological evolution models with
general smooth hypergeometric fitness landscapes. Our numerical solutions of diploid biological evolution
models confirm the analytic equations obtained. We also study the parallel diploid model for the simple case of
recombination and calculate the variance of distribution, which is consistent with numerical results.
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I. INTRODUCTION

After the development of molecular biology, it is of inter-
est to know whether one can use statistical physics to under-
stand biological evolution at the molecular level. The asexual
evolution models by Eigen �1,2� and Crow and Kimura �CK�
�3� are especially interesting from the statistical physics
point of view. The genetic information of a biological system
�e.g., a virus� is stored in DNA or RNA sequence. Eigen and
CK used models, similar to a one-dimensional Ising model
with N spins, to represent a DNA or RNA sequence of N
bases and consider the time evolution of the probability dis-
tribution pi, 1� i�M, of M =2N spin configurations Si

��s1
�i� , . . . ,sN

�i�� corresponding to M DNA or RNA sequences
with +1 representing purines �R� and −1 pyrimidines �Y�.
Every sequence Si is assigned a value of the fitness function
ri, which represents the reproduction rate of Si. In the sim-
plest case of the single-peak fitness function, there is only
one peak configuration or sequence—say, S1—which has the
largest value of the fitness function so that r1=A�1 and ri
�1 for i�1. S1 can be chosen to be �1,1 , . . . ,1�—i.e., all
spins take +1—without loss of generality. The jth sequence
can change into the ith sequence via mutation. Eigen and CK
wrote down coupled differential equations for pi. In the
Eigen model �1,2�, the reproduction of a new generation of a
sequence and the mutation of such a sequence to a new se-
quence appear in the same term; thus, it is called the coupled
or connected mutation-selection model. In the CK model �3�,
reproduction and mutation appear in different terms of the
differential equation for pi and thus it is called the parallel
mutation-selection model.

Eigen introduced the concept of error threshold to the
molecular evolution model. When the mutation rate is
smaller than the error threshold, any original distribution of
pi will finally concentrate around the peak configuration S1
after relaxation, while at a high mutation rate the population
will distribute evenly in the whole genetic sequence space.
Eigen observed the connection of this phenomenon with the
ferromagnetic-paramagnetic phase transition in statistical

mechanics so that the error threshold and the degree that the
population grouped around the peak configuration corre-
spond to the critical point and the magnetization of the mag-
netic system, respectively �1,2�. Thus the phases below and
above the error threshold are called ferromagnetic �FM� and
paramagnetic �PM� phases, respectively.

The Eigen and CK models are weakly nonlinear differen-
tial equations, which can be mapped onto linear differential
equations after simple nonlinear transformations �4� and al-
low the application of statistical mechanics �5–7�. After the
review paper by Peliti �8� was presented, research on biologi-
cal evolution models has become a popular subject among
theoretical physicists and some exact results have been de-
rived �9–16� using either the maximum principle �10–12� or
the mapping of evolution models onto quantum mechanical
equations �9� and calculating the mean field by quantum sta-
tistical mechanics �13–16�.

To describe sexual evolution, one should use diploid evo-
lution models �17–20� and a rigorous mathematical approach
is important for such studies �17�. For the case of diploid
evolution there are only a few exact results �17,18�. Wiehe,
Baake, and Schuster �WBS� �19� have investigated the dip-
loid evolution model. However, in such a case the corre-
sponding �Hardy-Weinberg� equations are too strongly non-
linear to apply directly the methods of statistical mechanics.
For the simple case of a single-peak fitness landscape, some
exact results �19,20� have been obtained.

The hypergeometric model of diploid evolution in popu-
lation genetics was first introduced by Barton �21� in 1992,
then studied further in �22,23�. The hypergeometric model of
�22� could be considered as a direct mathematical generali-
zation of the WBS model �19�. The hypergeometric model
considers the multiple-locus evolution with two alleles in
any loci �22� in a discrete time, while the WBS model con-
siders a multiple-allele one-locus continuous-time evolution.
The mutation phenomenon has been considered in �19,20�,
but not in �22�. The migration- and frequency-dependent se-
lection version of the hypergeometric model was considered
in �23�.

In the present paper we solve exactly the diploid evolu-
tion model with mutation for the case of a general smooth
fitness landscape and calculate the mean fitness and steady-
state distribution by extending the method of �24�, where the*huck@phys.sinica.edu.tw
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asexual evolution model has been connected with the
Hamilton-Jacobi equation �HJE�. Our analytic results are
confirmed by numerical solutions and are consistent with
results of �19� �the error threshold line BC in Fig. 5, below�
for the single-peak fitness function. We investigate also the
bistability phase �20� for the coupled diploid model.

Recently there has been progress in the investigation of
recombination phenomena in the case of haploid models
�25�. It has been formulated as a simple model and investi-
gated numerically �25�. Later, the mean fitness was calcu-
lated �26,27�. We consider the �25� version of
recombination—i.e., the intragenic conversion �28,29�—and
calculate the variance of the distribution for the parallel dip-
loid model, which is consistent with numerical results. We
are interested in the steady-state properties of the models. As

the model is symmetric �fitness depends on the Hamming
distance from the reference sequence�, we have a permuta-
tion symmetric steady-state distribution as well.

This paper is organized as follows. In Sec. II, we consider
the parallel diploid model, including the single-peak fitness
function and general symmetric fitness landscapes. We com-
pare our analytic results with those obtained by numerical
calculations and find that they are consistent �Figs. 1 and 2�.
In Sec. III, we consider the coupled diploid model and find
that our analytic results are consistent with numerical calcu-
lations �Fig. 3�. In Sec. IV, we study the parallel diploid
model with recombination and find that our analytic results
are consistent with numerical calculations �Fig. 4�. Our re-
sults are discussed in Sec. V. In the Appendix, we present the
stability analysis and the phase diagram for the coupled dip-
loid model with single-peak fitness function �Fig. 5�.

II. PARALLEL DIPLOID MODEL

A. Single-peak fitness function

In the WBS parallel diploid model �19�, gene probabilities
pi evolve as

dpi

dt
= pi��

j=1

M

Aijpj − �
k=1

M

�
j=1

M

Ajkpjpk	 + �
j=1

M

mijpj . �1�

Here mij is a mutation matrix, mii=−�, and mij =� /N when
dij =1 and 0 for other cases with dij = �N−�k=1

M sk
�i�sk

�j�� /2 being

5 10 15 20
l

0.2

0.4

0.6

0.8

Pl

50 100 150 200
l

0.02

0.04

0.06

0.08

Pl

(b)

(a)

FIG. 1. Pl as a function of l for the fitness function. �a� For Eq.
�32� for N=100, s=5.3, h=0.1, and p=101. Solid line: analytic
solution. Circles: numerical solutions. �b� Equation �34� for a=4
b=0.5, and N=200. Solid line: analytic solution. Circles: numerical
solutions.
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FIG. 2. Mean fitness R= f�M0 ,M0� versus k for the CK model
with quadratic fitness f�m1 ,m2�=k�a�m1

2+m2
2� /2+bm1m2� with

a=4, b=0.5, and N=100. Solid line: analytic result obtained with
M0 from Eqs. �34� and �35� including the factor k. Circles: numeri-
cal results. Theoretical error threshold is at k=0.246.
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FIG. 3. The theoretical steady-state distribution �solid curve�
versus the numerics �circles� for the coupled diploid model with
quadratic fitness. The parameters of the model are N=50, a=6,
b=0.5, and �=1.
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FIG. 4. Comparison of analytic and numerical results for the
recombination model of Eq. �53� with the quadratic fitness function
of Eq. �34� for a=1.3, b=0.5, and N=100. Lower line: mean fitness
R versus c. Upper line: V from Eq. �58� versus c. In both cases,
solid lines are analytic solutions and circles are numerical solutions.
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the Hamming distance between configurations Si

��s1
�i� ,s2

�i� , . . . ,sN
�i�� and Sj ��s1

�j� ,s2
�j� , . . . ,sN

�j�� and represent-
ing the number of different symbols in two sequences. We
have a balance condition �i=1

M pi=1. Aij is the fitness of the
genotype �Si ,Sj�, and � jAijpj is the marginal fitness for the
sequence Si. WBS have written the single-peak fitness func-
tion Aij for the parallel diploid model as �19�

A11 = 2s, A1i = Ai1 = 2sh, for i � 1,

Aij = 0, for i � 1, j � 1, �2�

where s�0 and 0�h�1.
We are looking for the steady-state properties of the

model. The sequence consists of the letters �1, representing
“spins” in physics terminology, or A1 ,A0 alleles in the popu-
lation genetics hypergeometric model. Due to the symmetry
of the fitness function Aij and mutation matrix mij, there is a
corresponding symmetry distribution of pi so that pi= pj
when Si and Sj have the same Hamming distance from the
reference sequence S1. We define the Hamming class l as the
collection of all sequences with Hamming distance l from S1.
In each of such sequences, there are l sites with value −1 and
the other N− l sites have value +1.

To solve the model with 1 /N accuracy, we assume the
following scaling in equilibrium:

p1 
 1,

pi 

1

N�di1−1� , �3�

where di1 is the Hamming distance of Si from the reference
sequence S1. Denoting x� p1, we have the following mar-
ginal fitness of the wild sequence f1�� j=1

M A1jpj, of other
sequences f2�� j=1

M A2jpj, and the mean fitness R
��k=1

M � j=1
M Ajkpjpk:

f1 = 2sx + 2sh�1 − x�, f2 = 2shx ,

R = xf1 + �1 − x�f2. �4�

In the differential equation for p1�x, there is a mutational
term p2� /N proportional to p2. This term has a small param-
eter 1 /N. Neglecting this term, we derive with 1 /N accuracy
the equation for x:

dx

dt
= − x��2s − 4hs�x2 − 2s�1 − 3h�x − �2sh − ���

� − �1 − 2h�2sx�x − x−��x − x+� . �5�

Here x� are solutions of the quadratic equation

�2s − 4hs�x2 − 2s�1 − 3h�x − �2sh − �� = 0

on the right-hand side of Eq. �5� and they are given by

x� =
�1 − 3h� � ��1 − h�2 − 2�1 − 2h��/s

2�1 − 2h�
. �6�

Applying the stability analysis method used in the Appen-
dix to the present case, we can show that when

h � 1/3, �7�

the error threshold condition is �19�

2sh � � . �8�

Having a bulk expression for x, we derive, for R,

R = x�2sx + 2sh�1 − x�� + 2shx�1 − x� . �9�

At h�1 /3, there is a bistability �20�.
We derive recurrent formulas for pk, k�1, where pk is the

probability of the sequence from the kth Hamming class:

pk =
x�k−1

Nk−1�k − 1� ! �f1 − f2�k−1 . �10�

To derive the last expression, we have neglected in the equa-
tions for dpk /dt mutation terms from higher Hamming
classes 
pk+1, as such terms are suppressed by the factor
1 /N. Having explicit expressions for p1 and pk, k�2, we
verify the ansatz of Eq. �3�.

B. General symmetric fitness landscapes

To generalize the single-peak fitness, we assume that the
fitness of the configuration Si is a smooth function of the
Hamming distance between Si and the peak configuration S1.
In such a case, it is convenient to work with the overlap m
= �1−2di1 /N� instead of the Hamming distance di1. Consider

the following choice of the matrix Â:

Aii = f�m,m� ,

Aij = f�m1,m2� , �11�

where m1=1−2di1 /N and m2=1−2dj1 /N. In the hypergeo-
metric model N�1+m1� /2 and N�1+m2� /2 are, respectively,
the number of A1 maternal and paternal alleles. f�m1 ,m2� is a
smooth analytical function. If there is a permutation symmet-
ric initial distribution of pi, the symmetry will be conserved

B

C

S1

D

E F

S2

NS

0

A

r

1
Q

FIG. 5. The phase diagram of the coupled diploid model with
single-peak fitness function of Eq. �37� and R0=4. The OBC line is
the error threshold by WBS, and the ABC line is our error threshold.
NS is the error catastrophe phase. S1 is a selective phase with
a bistability. In the �1 /Q-r� plane, O has coordinates �1,1�,

A= �1,
1+�R0

2 �, B= �
1+�1+8R0

4 ,
1+�1+8R0

4 �, E= �
R0+2

3 ,1�, F= �
R0+1

2 ,1�. The
line AB is given by the equation b2−4ac=0.
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during the dynamics; see the discussion before Eq. �9� in
�22�. We are interested in finding the exact phase structure
and the steady state; therefore, we can consider only sym-
metric solutions of pi.

The point is that all exact methods for the solution of
asexual evolution models—direct mapping to the
Schrödinger equation, Suzuki-Trotter, high temperature ex-
pansion, functional integral, quadratic form maximum meth-
ods �see �24� for a comparison of the different methods�—
used the linearity of equations, after the nonlinear
transformations �4�. In �24�, one of us proposed a method to
solve exactly models of asexual evolution by mapping an
infinite set of differential equations onto the single HJE.
When the original system of equations is linear, we get a
simple HJE.

Now we extend the method of �24� to the diploid model.
For a symmetric pi, the total probability of the lth class, Pl,
for 0� l�N is related to pi of a typical sequence Si in that
class by

pi =
Pl

Nl
, Nl =

N!

l ! �N − l�!
, �12�

where l�d1i is the Hamming distance between Si and S1.
Choosing �=1, we derive equations for Pl from Eq. �1� for
pi:

dPl

dt
= PlFl − Pl�1 + �

k

FkPk
+

1

N
��N − l + 1�Pl−1 + �l + 1�Pl+1� . �13�

Here Fl=�n=0
N f�1−2l /N ,1−2n /N�Pn. Let us assume that at

any moment of time, most sequences concentrate at some
Hamming distance l0�N�1−m0� /2 and Pn decreases quickly
�exponentially� with the distance �l− l0�. On the other hand,
f�1−2l /N ,1−2n /N� is a smooth function of l /N. Then, with
1 /N accuracy, Fl could be replaced by

Fl = f�m,m0� . �14�

We did not assume any sharpness of the fitness landscape.
We just use the sharpness of the distribution Pl and propose
the ansatz

Pl = exp�Nu�m,t�� , �15�

where m=1−2l /N. We find an explicit solution for the func-
tion u, confirming our ansatz.

Then we have the following system of equations:

dPl

dt
= Plf�1 −

2l

N
,1 −

2l0

N
 +

1

N
��N − l + 1�Pl−1 + �l + 1�Pl+1�

− Pl�1 + f�1 −
2l0

N
,1 −

2l0

N
	 . �16�

Our ansatz, Eq. �15�, implies that, at N→	,

Pl+1 = exp�Nu�m,t��exp�− 2u��m,t�� ,

Pl−1 = exp�Nu�m,t��exp�2u��m,t�� . �17�

Thus we have

Ndu�m,t�
dt

= f�m,m0� +
1 + m

2
exp�2u��m,t��

+
1 − m

2
exp�− 2u��m,t�� − 1 − f�m0,m0� ,

�18�

where the maximum of exp�Nu�m , t�� is at the point m0. The
large constant N disappeared on the right-hand side of Eq.
�18�, which is consistent with the ansatz of Eq. �15�.

In �24�, one of us obtained the equation

Ndu�m,t�
dt

= f0�m� +
1 + m

2
exp�2u��m,t��

+
1 − m

2
exp�− 2u��m,t�� − 1, �19�

for the CK asexual evolution model �3�, after linearization.
The solution of Eq. �19� is

u�m,t� =
R

N
t + u0�m� ,

R = maxm�U�m�� , �20�

where u0�m� defines the steady-state distribution �see also
�11��. The mean fitness R is defined as the global maximum
of

U�m� = �1 − m2 − 1 + f0�m� , �21�

which could be considered as a potential energy. The expres-
sion for R was derived in �11� via the maximum principle
and in �14� via the Suzuki-Trotter method. It is possible to
derive R directly in the HJE approach. The dynamic solution
of Eq. �18� is much more involved than the one of Eq. �19�,
but the steady-state solutions are similar.

Let as assume that at t→	 the point of the maximum of
u�m , t�, m0, tends to M0. Then the solution of Eq. �18� should
coincide with the solution of the HJE

Ndu�m,t�
dt

= f�m,M0� +
1 + m

2
exp�2u��m,t��

+
1 − m

2
exp�− 2u��m,t�� − 1 − f�M0,M0� .

�22�

Comparing Eq. �22� with Eq. �19�, we see only an extra
constant term −f�M0 ,M0� on the right-hand side. Dropping
this extra term, we have an equation
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Ndv�m,t�
dt

= f�m,M0� +
1 + m

2
exp�2v��m,t��

+
1 − m

2
exp�− 2v��m,t�� − 1. �23�

The solution of this equation, v�m , t�, could be mapped onto
the solution of Eq. �22� via a simple formula

u�m,t� = v�m,t� − f�M0,M0�t/N . �24�

Following Eqs. �19� and �20�, we have, for the asymptotic
solution of Eq. �23�,

v�m,t� =
R

N
t + v0�m� ,

R = maxm�U�m,M0�� . �25�

v0�m� defines the steady-state solution, and the potential
U�m ,M0� is defined as

U�m,M0� = �1 − m2 − 1 + f�m,M0� . �26�

Having the value of R, we write the solution of u:

u�m,t� = �R − f�M0,M0��t/N + v0�m� , �27�

where R is given by Eq. �25�. On the other hand, we are
looking for the steady-state solution. This means that R
= f�M0 ,M0�. M0 is the surplus �M0=m0 at steady state�, de-
fined via the equation

M0 = �
l

�1 − 2l/N�Pl. �28�

The surplus is the mean value of the overlap. When the
population is located at the Hamming distance N�1−m� /2
with overlap m, then the surplus equals m.

Thus the mean fitness R and surplus M0�m0 are derived
via a system of equations

R = f�M0,M0� ,

R = maxm�U�m,M0�� . �29�

Having the value of M0, we write the steady-state version of
the differential equation �22�:

f�M0,M0� = f�m,M0� − 1 +
1 + m

2
exp�2u��m��

+
1 − m

2
exp�− 2u��m�� . �30�

From Eqs. �15� and �30� we get, for the steady-state solution,

Pl = exp�N
1

2
�

−1

m

dt ln
− q + �q2 − 1 + t2

1 + t 	 , �31�

where q= f�t ,M0�−1− f�M0 ,M0� and m=1−2l /N.
To check the reliability of the derived equations, let us

consider the fitness landscape Aij � f�m1 ,m2� with

f�m1,m2� = 2�m1
p + m2

p�sh + 2s�1 − 2h�m1
pm2

p, �32�

which approaches the fitness function of Eq. �2� at p→	. We
can solve the system of equations �29� for M0 and the point
of maximum U�m ,M0�, x, with the following equations:

2spxp−2�h + �1 − 2h�M0
p� =

1
�1 − x2

,

2hM0
p + �1 − 2h�M0

2p = h�xp + M0
p� + �1 − 2h�xpM0

p

+
�1 − x2 − 1

2s
. �33�

After obtaining M0, we can calculate Pl from Eq. �31� and
R� f�M0 ,M0�.

With the ansatz x=1−c1 / p2, M0=1−c2 / p, we replace
xp→1 and get for z=M0

p the stationary version of Eq. �5� for
the variable x. Equations �29�, �32�, and �33� give the expres-
sion for R, which coincides with the one by Eq. �4� with x
given by Eq. �6�. Thus we have verified that our method
recovers the result of the single-peak fitness case.

As another example, we consider the fitness landscape
Aij � f�m1 ,m2� with the quadratic fitness

f�m1,m2� = a
�m1

2 + m2
2�

2
+ bm1m2. �34�

Equation �29� gives coupled equations for M0 and the point
of maximum U�m ,M0�, x:

ax + bM0 =
x

�1 − x2
,

a�x2 + M0
2�

2
+ bxM0 − 1 + �1 − x2 = �a + b�M0

2. �35�

After obtaining M0, we can calculate the mean fitness R and
Pl from Eqs. �29� and �31�.

Figure 1 shows that analytic solutions of Pl for the fitness
functions of Eqs. �32� and �34� are consistent with numerical
solutions. Figure 2 shows that the analytic results for the
mean fitness R with the fitness function f�m1 ,m2�
=k�a

�m1
2+m2

2�
2 +bm1m2� are also consistent with numerical re-

sults. There are two pairs of solutions, connected via the
transformation �m ,M0�→ �−m ,−M0�, but only one pair is
stable �the sign of M0 is chosen from the initial condition�.

III. COUPLED DIPLOID MODEL

For the coupled diploid evolution, WBS �19� have pro-
posed the following equation:

dpi

dt
= �

j=1

M �Qij�
l=1

M

Aljplpj − pi��
l=1

M

Aljpjpl	 , �36�

where Qij =qN−dij�1−q�dij and is the mutation probability
from Sj to Si with dij being the Hamming distance between Sj
and Si, and qN�e−� is the errorless copying probability.
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A. Single-peak fitness function

For the single-peak fitness landscape, WBS �19� sug-
gested that

A11 = �1 + s�2,

A1i = Ai1 = �1 + s�2h, for i � 1,

Aij = 1, for i � 1, j � 1. �37�

WBS gave an error threshold formula: Eq. �19� �19�: e−�

�Q�qN�1 / �1+s�2h. It corresponds to OBC line in Fig. 5
of the Appendix.

Denoting p1=x, we have, for the marginal fitness of the
peak sequence S1,

g1 � �
j=1

M

A1jpj = �1 + s�2x + �1 + s�2h�1 − x� , �38�

for the other sequences,

g2 � �
j=1

M

A2jpj = �1 + s�2hx + �1 − x� , �39�

and for the mean fitness,

F � �
j,l=1

M

Ajlpjpl = xg1 + �1 − x�g2

= ��1 + s�2x2 + 2�1 + s�2hx�1 − x� + �1 − x�2� . �40�

Neglecting the mutation term which contains Q1j with j�1
in Eq. �36�, we write the dynamic equation for the x� p1 as

dx

dt
= − x�x2��1 + s�2 − 2�1 + s�2h + 1�

+ x�− Q�1 + s�2 + Q�1 + s�2h + 2�1 + s�2h − 2�

+ 1 − Q�1 + s�2h� . �41�

In the Appendix, we use a stability analysis method to find a
stable physical solution of Eq. �41�. Using such a stable
physical solution x� in F, we find the mean fitness F per
genome length:

F = ��1 + s�2�x��2 + 2�1 + s�2hx��1 − x�� + �1 − x��2� .

�42�

When

�1 + s�2h �
1 + �1 + 8�1 + s�2

4
, �43�

there is only one stable solution in Eq. �41�. Otherwise, there
is a bistability in region S1 of Fig. 5, which is similar to the
parallel diploid model �20�.

B. General smooth fitness landscapes

Instead of the single-peak fitness, now we take Aij
= f�m1 ,m2�. For example, we can take

f�m1,m2� = ��1 + s�2h − 1��m1
p + m2

p�

+ ��1 + s�2 − 2�1 + s�2h + 1�m1
pm2

p + 1, �44�

which becomes the single-peak fitness function of Eq. �37�
as p→	.

To solve the model with the general fitness landscape, we
will again consider the HJE approach of �24�, which gives
the following equations for the Eigen asexual model and for
the mean fitness R in the asymptotic expression u�m , t�
=Rt /N+u0�m�:

N � u�m,t�
�t

= f0�m�e−�exp���cosh�2
�u�m,t�

�m


+ m sinh�2
�u�m,t�

�m
	� ,

R = max�f�m�exp�− ��1 − �1 − m2��� . �45�

In analogy with the previous section for the parallel diploid
model, we now derive the following equation for the steady
state Pl=exp�Nu0�m�� :

f�M0,M0� = f�m,M0�e−�exp„��cosh�2u0��m��

+ m sinh�2u0��m���… . �46�

We define the mean fitness R� f�M0 ,M0� as

f�M0,M0� = maxm�U�m,M0�� , �47�

where the potential U�m ,M0� is defined as

U�m,M0� = f�m,M0�exp����1 − m2 − 1�� . �48�

Now we get the distribution Pl from the equation

Pl = exp�N
1

2
�

1

m

dt ln
q + �q2 − 1 + t2

1 + t 	 , �49�

where q=1+ 1
� ln

f�M0,M0�
f�m,M0� and m=1−2l /N.

For the fitness, given by Eq. �44�, and for large p, we use
the ansatz 1−M0
1 / p2 and 1−m
1 / p; then, Eq. �47�
gives

Q��1 + s�2h − 1��1 + z� + Q��1 + s�2 − 2�1 + s�2h + 1�z + Q

= 2��1 + s�2h − 1�z + ��1 + s�2 − 2�1 + s�2h + 1�z2 + 1,

�50�

where z=mp ,Q=exp�−��. We find that Eq. �47� gives the
same expression for the mean fitness per genome length as
Eqs. �41� and �42�. For N=100, �=1, and p=101, our for-
mula gives for the mean fitness per genome length 2.084,
which is very close to 2.087 obtained by numerical calcula-
tions.

We also solve the case of the quadratic fitness function

f�m1,m2� =
1

2
a�m1

2 + m2
2� + bm1m2 + 1. �51�

We have used Eqs. �47� and �48� to calculate M0, then used
Eq. �49� to calculate Pl. The results for N=50, a=6, b=0.5,
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and �=1 are shown in Fig. 3. Our analytic results are con-
sistent with those obtained by numerical calculation.

IV. PARALLEL DIPLOID MODEL WITH
RECOMBINATION

For the real diploid evolution, the recombination rate is
often much higher than the mutation rate. The recombination
in the multiple-loci case is very complicated �17,18�. Here
we consider a simple parallel diploid model with recombina-
tion, corresponding to the case of intragenic gene conversion
�28�. Sometimes it is the primary mechanism of recombina-
tion �29�. In the case of the diploid evolution, biologists usu-
ally investigate the stability of the states. We investigate only
the mean fitness and the variance of the distribution. The
latter is one of main targets of a quantitative analysis of the
data.

Consider the model with many loci and two alleles at
every locus. Now Eq. �1� is modified with a new quadratic
term for describing the recombination:

dpi

dt
= pi��

j

Aijpj − �
k=1

M

�
j=1

M

Ajkpjpk	 + �
j

mijpj + �
j,l

Tjl
i pjpl,

�52�

where pi are haplotype frequencies, the probability of the ith
collection of genes in sexual cells, and Tjl

i describes the re-
combination. Usually one separates the fitness contribution
from one-locus and many-locus interactions. We consider the
simplest case where there is a symmetry between different
loci. Cohen, Kessler, and Levine �25� have considered the
recombination matrix Tjl

i for haploid models, in which hap-
loid types Sj and Sl exchange a single spin to create the new
type Si. Let us take the matrix of �25,26� to describe the
recombination. Tjl

i is nonzero only for configurations
Si ,Sj ,Sl, such that Si differs from Sj or Sl by one spin. For the
simple case of symmetric fitness landscapes we have

dPl

dt
= PlFl − Pl�1 + �

k

FkPk
+

1

N
��N − l + 1�Pl−1 + �l + 1�Pl+1�

− c��1 −
l̄

N
 l

N
Pl +

l̄

N
�1 −

l

N
Pl

− �1 −
l̄

N
 l + 1

N
Pl+1 −

l̄

N
�1 −

l − 1

N
Pl−1	 , �53�

where c is the recombination rate, denoted as fs in �25� �its
connection with Tjl

i of Eq. �52� can be found in �25,26��, and

l̄=�lPll. The last two lines are just the recombination terms
of �26�, first introduced in �25�. The meaning of those is
explicit: any letter of a given sequence could be replaced via
the corresponding letter from the genes pool �collection of
letters at the same locus in the population�. For the sequence
from the lth Hamming class the probability of the cut letter
to be +1 is �1− l /N� and equal to l /N to be −1. This dropped

letter is replaced via the randomly chosen letter from the
whole population.

Repeating the derivation of Sec. II, we get, instead of Eq.
�18�,

Ndu�m,t�
dt

= f�m,m0� − f�m0,m0� +
1 + m

2
e2u��m,t�

+
1 − m

2
e−2u��m,t� − 1 − c

�1 − mm0�
2

+ c� �1 + m��1 − m0�
4

e2u�

+
�1 − m��1 + m0�

4
e−2u�	 . �54�

Repeating the derivations of previous sections, we get an
equation for the mean fitness:

R = f�M0,M0� = maxm�U�m,M0�� , �55�

where

U�m,M0� = f�m,M0� −
1

2
c�1 − mM0�

+��1 − m2���1 +
1

2
c2

−
1

4
c2M0

2	 − 1.

�56�

For practical applications it is important to calculate the vari-
ance of distributions �30�. Consider the steady-state solution
of Eq. �54� near the maximum of distribution at the point
m=M0, differentiate Eq. �54�, and put u��m�=u��M0��m
−M0�. We get, for the variance,

��m − M0�2� =
2M0

Nf��M0,M0�
�57�

and

N���
i

pi��
j

Aijpj2� − ���
i

pi��
j

Aijpj�	2�
= 2M0f��M0,M0� � V . �58�

We derived the above expressions for the mutation rate
�=1. For ��1 the expression should be multiplied by �.

We have performed numerical calculations for the qua-
dratic fitness of Eq. �34� and compared the results with ana-
lytic calculations. Our theoretical and numerical results are
quite consistent as shown in Fig. 4.

V. DISCUSSION

In population genetics it is important to find the steady-
state distribution. This distribution has been well investigated
mainly for few alleles, although multiple-allele models �a
well-known example is the infinite allele model �3�� are more
realistic. In recent years, the study of human population via
the distribution of a large set of genes has become an impor-
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tant topic in genome research �31�. One of the central issues
is the existence of a selection pressure for several genes. We
have solved the model with a selection for the rather general
case �one locus and many alleles or many loci with two
alleles at any one�. Moreover, it is possible to solve directly
our Eq. �18� and get the dynamics for the realistic situation.
We derived exact analytical expressions for the steady-state
distribution for the multiple-allele model with general fitness
landscape for the parallel diploid model, Eq. �31�, and
coupled diploid model, Eq. �49�. We defined the mean fitness
f�M0 ,M0� and surplus M0 in Eq. �29� for the parallel model
and in Eq. �47� for the coupled model. Our analytical results
for the mean fitness, error threshold, and steady-state distri-
bution are well confirmed by numerical solutions.

The principal difference between the asexual evolution
model and diploid evolution model could be clarified by
comparing the potentials U�m� of Eq. �21� and U�m ,M0� of
Eq. �26�. In the case of asexual evolution, we have a single
solution for the mean fitness R, while in the diploid case
several solutions are possible, as the potential U�m ,M0� de-
pends on the value of the parameter M0. The existence of
several solutions for the extremum problems of a potential
U�m ,M0� indicates the possibility of multistability. The ex-
istence of different locally stable solutions for the diploid
model has been discussed in �20,32�. Park and Deem �26�
have investigated this phenomenon in a simple recombina-
tion haploid model. We solved a simple case of recombina-
tion in a diploid model, assuming a constant recombination
rate between loci �regardless of the distance between loci�. It
is a crude approximation �valid at least for the case of in-
tragenic conversion only �28,29��, but it can catch the quali-
tative features of the recombination phenomenon.

We have derived the variance of the distribution for the
recombination model with general fitness, Eq. �57�. The cal-
culation of this variance is one of the main subjects of quan-
titative population genetics �30�. In our approach we could
calculate the population profile for the recombination model,
which was impossible to do in the approach of �26�. Our Eq.
�57� shows that there is no serious difference in the popula-
tion distribution for the cases with and without recombina-
tion. For the homogenous fitness function f�m1 ,m2�, the
population variance does not depend on the recombination.
Thus, while the recombination suppresses the mean fitness
�together with mutation�, it plays a quite different role in
shaping the population profile and does not change it in the
case of homogenous fitness landscapes.

The evolution advantage of this simple form of recombi-
nation, if any, could be only in dynamics. There have been
claims about the possible advantage of dynamics �25�. To
check this hypothesis of �25�, one needs a careful investiga-
tion of the dynamical solution of Eq. �54� �very similar to the
corresponding dynamics of the case without recombination�,
as well as its finite population version. There is another pos-
sibility as well. All models considered in this work, as well
as in �25,26�, are completely mean-field-like: the fitness, the
mutations, and the recombination. The mean-field-like be-
havior ceases to work for recombination in several situations
�33�. There is a chance that the evolution behavior for those
cases is different from the one by mean-field-like recombi-
nation. The evolution model with differential equation has a

more restricted meaning for diploids than for haploids
�18,34�. Our results could be generalized for the case of
discrete-time models with smooth fitness landscapes. In this
paper we considered only symmetric fitness and
permutation-invariant distributions. It is possible to write and
investigate the HJE equation for the multiple-peak case �15�,
breaking the permutation symmetry.
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APPENDIX: STABILITY ANALYSIS OF THE SINGLE-
PEAK FITNESS COUPLED DIPLOID MODEL

Denoting R0= �1+s�2 ,r= �1+s�2h and neglecting the mu-
tation term which contains Q1j with j�1 in Eq. �36�, we
write the dynamic equation for x� p1:

dx

dt
= Qg1x − x2g1 − x�1 − x�g2

= − �R0 − 2r + 1�x�x − x−��x − x+� . �A1�

Here

x� =
− b � �b2 − 4ac

2a

are solutions of the equation

ax2 + bx + c = 0, �A2�

where a= �R0−2r+1�, b= �−QR0+Qr+2r−2�, and
c= �1−Qr�. Solutions x+ and x− are real numbers when

b2 − 4ac � 0. �A3�

We can use signs of the coefficients a, b, and c of Eq. �A2�
to analyze the stability of solutions x=0, x=x−, and x=x+ of
Eq. �A1�. Figure 5 shows the phase diagram in the 1 /Q-r
plane. In Fig. 5, a=0 is the vertical line through r= �R0
+1� /2 with a�0 and a�0 representing regions on the left-
hand and right-hand sides of the line, respectively; c=0 is the
diagonal line OBC with c�0 and c�0 representing regions
below and above the line, respectively; b=0 is the hyperbolic
line BE, 1 /Q= �R0−r� /2�r−1�, with r=1 and 1 /Q=−1 /2 as
asymptotic axes, and b�0 and b�0 representing regions
below and above the line, respectively. The hyperbolic line
goes through point B in Fig. 5 and passes through the
horizontal line 1 /Q=1 at point E with r= �R0+2� /3
� �R0+1� /2.

The inequality �A3� is represented by line AB in Fig. 5;
the points in phase S1 satisfy the inequality. For r=1 /Q,
inequality �A3� gives the coordinate of the point B:
��1+�1+8R0� /4, �1+�1+8R0� /4�. At r=1, inequality �A3�
is simplified as
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Q �
2

1 + �R0

, �A4�

which gives the coordinate of the point A as
�1, �1+�R0� /2�.

The lines a=0, b=0, c=0 and the line b2−4ac=0 in the
region a�0, b�0, c�0 divide the plane r�1 and 1 /Q
�1 into seven regions. We can analyze the stability of solu-
tions x=0, x=x−, and x=x+ of Eq. �A1� in these regions as
follows.

�i� a�0, b�0, and c�0. From the inequalities r
� �R0+1� /2 and Qr�1, we have the inequality

b2 − 4ac = d2 + �a − c�2 − 2d�a + c� � 0,

where d=R0�1−Q��0. Therefore we have x−�x+�0. Near
x+, to the leading order we have

dx�

dt
= − Ax�,

where A=ax+�x+−x−��0 and x�=x−x+. It is easy to derive
that x�
exp�−At�→0 for t→	 and x+ is a stable solution.
We use a similar analysis to find that the solutions x=x− and
x=0 are unstable. Thus, in the steady state, the system will
reach the stable solution x=x+.

Using a similar analysis, we can reach following results.
�ii� a�0, b�0, and c�0. x+�0, x−�0, and �x−��x+.

We find that x+ and x− are stable solutions, but x=0 is not a
stable solution. As initially x�0��0, only the x=x+ stable
solution is relevant. Thus, in the steady state, the system will
choose the physical solution x= p1=x+.

�iii� a�0, b�0, and c�0. We have x+� �x−��0 and x−
�0. There is only one physical stable solution x+.

�iv� a�0, b�0, and c�0. x+�0�x−. Solutions x=x−
and x=x+ are unstable; the solution x=0 is stable. The sys-
tem will reach the physical solution x=0 in the steady state.

�v� a�0, b�0, and c�0. When b2−4ac�0, we have
x−�x+�0. Solutions x=x− and x=0 are stable; the solution
x=x+ is not stable. The system will reach the physical solu-
tion x=0 in the steady state.

�vi� When b2−4ac�0, x=0 is the only stable physical
solution.

�vii� c�0 and a�0. When b2−4ac�0, we have 0�x−
�x+. Solutions x=0 and x=x+ are stable and the solution x
=x− is unstable. When the initial value of x�t�, x�0�, is
smaller than x−, the system will be driven to the fixed point
x=0; when x�0� is larger than x−, the system will be driven to
the fixed point x=x+. Thus the final steady state depends on
the initial condition x�0�. The bistable phase is represented
by S1 �OBA� in Fig. 5.

When c�0, regions 1, 2, and 3 form the selective phase
S2 of Fig. 5. When c�0, regions 4, 5, and 6 form the non-
selective phase NS and region 7 has a bistable phase S1. The
phase S2 has been found in �19�, while the phase S1 has been
missed. The phase S1 has been found later for the parallel
model in �20�.

Let us derive the steady-state distribution. For the distri-
bution pi we have

p2 =
�x

N

g1

g1 − g2
,

pn+1 =
p1g1� �

N�n + �
¯

n!pl+1� �
N�n−l

�n−l�!l! + ¯ + npn
�
N
	g2

g1 − g2
,

�A5�

where p1�x and f1 , f2 are defined by Eqs. �38� and �39�.
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